Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.

Identifieur interne : 000101 ( Main/Exploration ); précédent : 000100; suivant : 000102

Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.

Auteurs : Rajib Biswas [États-Unis] ; Philip J. Teller [États-Unis] ; Muhammad U. Khan [États-Unis] ; Birgitte K. Ahring [États-Unis]

Source :

RBID : pubmed:32727071

Abstract

Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as temperature (170-190 °C), oxygen dosage (0.5-7.5% of dry matter (DM), w/w), residence time (10-30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes (Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1% and 83.1%, respectively, could be achieved with a pretreatment at 177 °C with 7.5% O2 and a retention time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating at 190 °C; however, the hemicellulose yield would be significantly reduced. It was evident that more severe conditions were required for maximal cellulose digestibility than that of hemicellulose digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in the maximum sugar yield.

DOI: 10.3390/molecules25153396
PubMed: 32727071
PubMed Central: PMC7436106


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.</title>
<author>
<name sortKey="Biswas, Rajib" sort="Biswas, Rajib" uniqKey="Biswas R" first="Rajib" last="Biswas">Rajib Biswas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teller, Philip J" sort="Teller, Philip J" uniqKey="Teller P" first="Philip J" last="Teller">Philip J. Teller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, Muhammad U" sort="Khan, Muhammad U" uniqKey="Khan M" first="Muhammad U" last="Khan">Muhammad U. Khan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahring, Birgitte K" sort="Ahring, Birgitte K" uniqKey="Ahring B" first="Birgitte K" last="Ahring">Birgitte K. Ahring</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32727071</idno>
<idno type="pmid">32727071</idno>
<idno type="doi">10.3390/molecules25153396</idno>
<idno type="pmc">PMC7436106</idno>
<idno type="wicri:Area/Main/Corpus">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000165</idno>
<idno type="wicri:Area/Main/Curation">000165</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000165</idno>
<idno type="wicri:Area/Main/Exploration">000165</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.</title>
<author>
<name sortKey="Biswas, Rajib" sort="Biswas, Rajib" uniqKey="Biswas R" first="Rajib" last="Biswas">Rajib Biswas</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Teller, Philip J" sort="Teller, Philip J" uniqKey="Teller P" first="Philip J" last="Teller">Philip J. Teller</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khan, Muhammad U" sort="Khan, Muhammad U" uniqKey="Khan M" first="Muhammad U" last="Khan">Muhammad U. Khan</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Ahring, Birgitte K" sort="Ahring, Birgitte K" uniqKey="Ahring B" first="Birgitte K" last="Ahring">Birgitte K. Ahring</name>
<affiliation wicri:level="2">
<nlm:affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
<affiliation wicri:level="2">
<nlm:affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163</wicri:regionArea>
<placeName>
<region type="state">Washington (État)</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Molecules (Basel, Switzerland)</title>
<idno type="eISSN">1420-3049</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as temperature (170-190 °C), oxygen dosage (0.5-7.5% of dry matter (DM),
<i>w</i>
/
<i>w</i>
), residence time (10-30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes (Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1% and 83.1%, respectively, could be achieved with a pretreatment at 177 °C with 7.5% O
<sub>2</sub>
and a retention time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating at 190 °C; however, the hemicellulose yield would be significantly reduced. It was evident that more severe conditions were required for maximal cellulose digestibility than that of hemicellulose digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in the maximum sugar yield.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">32727071</PMID>
<DateRevised>
<Year>2020</Year>
<Month>08</Month>
<Day>25</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1420-3049</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>25</Volume>
<Issue>15</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
<Day>27</Day>
</PubDate>
</JournalIssue>
<Title>Molecules (Basel, Switzerland)</Title>
<ISOAbbreviation>Molecules</ISOAbbreviation>
</Journal>
<ArticleTitle>Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.</ArticleTitle>
<ELocationID EIdType="pii" ValidYN="Y">E3396</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.3390/molecules25153396</ELocationID>
<Abstract>
<AbstractText>Wet explosion pretreatment of hybrid poplar sawdust (PSD) for the production of fermentable sugar was carried out in the pilot-scale. The effects of pretreatment conditions, such as temperature (170-190 °C), oxygen dosage (0.5-7.5% of dry matter (DM),
<i>w</i>
/
<i>w</i>
), residence time (10-30 min), on cellulose and hemicellulose digestibility after enzymatic hydrolysis were ascertained with a central composite design of the experiment. Further, enzymatic hydrolysis was optimized in terms of temperature, pH, and a mixture of CTec2 and HTec2 enzymes (Novozymes). Predictive modeling showed that cellulose and hemicellulose digestibility of 75.1% and 83.1%, respectively, could be achieved with a pretreatment at 177 °C with 7.5% O
<sub>2</sub>
and a retention time of 30 min. An increased cellulose digestibility of 87.1% ± 0.1 could be achieved by pretreating at 190 °C; however, the hemicellulose yield would be significantly reduced. It was evident that more severe conditions were required for maximal cellulose digestibility than that of hemicellulose digestibility and that an optimal sugar yield demanded a set of conditions, which overall resulted in the maximum sugar yield.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Biswas</LastName>
<ForeName>Rajib</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Teller</LastName>
<ForeName>Philip J</ForeName>
<Initials>PJ</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Khan</LastName>
<ForeName>Muhammad U</ForeName>
<Initials>MU</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ahring</LastName>
<ForeName>Birgitte K</ForeName>
<Initials>BK</Initials>
<AffiliationInfo>
<Affiliation>Bioproducts, Sciences and Engineering Laboratory, Washington State University, Tri-Cities, 2710, Crimson Way, Richland, WA 99354, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Biological Systems Engineering, L.J. Smith Hall, Washington State University, Pullman, WA 99164, USA.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA 99163, USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>NARA</GrantID>
<Agency>USDA</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>07</Month>
<Day>27</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Molecules</MedlineTA>
<NlmUniqueID>100964009</NlmUniqueID>
<ISSNLinking>1420-3049</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">biorefineries</Keyword>
<Keyword MajorTopicYN="N">enzymatic hydrolysis</Keyword>
<Keyword MajorTopicYN="N">fermentable sugars</Keyword>
<Keyword MajorTopicYN="N">hybrid poplar</Keyword>
<Keyword MajorTopicYN="N">wet explosion pretreatment</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>20</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32727071</ArticleId>
<ArticleId IdType="pii">molecules25153396</ArticleId>
<ArticleId IdType="doi">10.3390/molecules25153396</ArticleId>
<ArticleId IdType="pmc">PMC7436106</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Biotechnol Bioeng. 1999 Apr 5;63(1):46-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10099580</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2020 Feb;298:122537</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31838240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2008 Aug 14;454(7206):841-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18704079</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Water Sci Technol. 2012;66(8):1751-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22907461</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2005 Apr;96(6):673-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15588770</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 Jan;272:99-104</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30316197</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 Sep;288:121583</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31176941</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2018 Jan;247:1144-1154</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28993055</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2016 Jul;212:42-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27078206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AMB Express. 2013 Jul 29;3:42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23895663</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Jan;104:743-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22130080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Bioeng. 2019 Nov;116(11):2864-2873</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31403176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Carbohydr Res. 2014 Feb 19;385:45-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24412507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2009 Jan;100(1):10-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18599291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Jan;175:182-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25459820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2015 Sep;192:46-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26011690</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2012 Oct;121:61-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22854131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2019 May;280:303-312</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30776657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioresour Technol. 2008 Sep;99(14):6602-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18164954</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechnol Prog. 2009 Mar-Apr;25(2):340-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19294734</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Washington (État)</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Washington (État)">
<name sortKey="Biswas, Rajib" sort="Biswas, Rajib" uniqKey="Biswas R" first="Rajib" last="Biswas">Rajib Biswas</name>
</region>
<name sortKey="Ahring, Birgitte K" sort="Ahring, Birgitte K" uniqKey="Ahring B" first="Birgitte K" last="Ahring">Birgitte K. Ahring</name>
<name sortKey="Ahring, Birgitte K" sort="Ahring, Birgitte K" uniqKey="Ahring B" first="Birgitte K" last="Ahring">Birgitte K. Ahring</name>
<name sortKey="Ahring, Birgitte K" sort="Ahring, Birgitte K" uniqKey="Ahring B" first="Birgitte K" last="Ahring">Birgitte K. Ahring</name>
<name sortKey="Khan, Muhammad U" sort="Khan, Muhammad U" uniqKey="Khan M" first="Muhammad U" last="Khan">Muhammad U. Khan</name>
<name sortKey="Khan, Muhammad U" sort="Khan, Muhammad U" uniqKey="Khan M" first="Muhammad U" last="Khan">Muhammad U. Khan</name>
<name sortKey="Teller, Philip J" sort="Teller, Philip J" uniqKey="Teller P" first="Philip J" last="Teller">Philip J. Teller</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000101 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000101 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32727071
   |texte=   Sugar Production from Hybrid Poplar Sawdust: Optimization of Enzymatic Hydrolysis and Wet Explosion Pretreatment.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32727071" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020